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Abstract

A displacement separation technique is employed to simplify the basic equations of a piezoceramic body with radial
inhomogeneity. It is shown that the controlling equations are finally reduced to an uncoupled second-order ordinary
differential equation and a coupled system of three second-order ordinary differential equations. Solutions to these
differential equations are given for the case that material constants are of power functions of the radial coordinate. The
static analysis of a steadily rotating spherical shell is then presented. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Piezoelectric materials (PZMs) nowadays have been widely employed as integrated structural elements in
various applications. In practice, these smart components and elements are mostly fabricated in plate or
shell configurations. Numerous investigations on the static and dynamic behaviors of piezoelectric plates
and shells have been carried out (Batra and Liang, 1997; Bisegna and Maceri, 1996; Chen et al., 1997, 1998;
Ding et al., 1997, 1999; Heyliger, 1997; Lee and Saravanos, 1997; Paul and Natarajan, 1996; Tzou and
Zhong, 1994).

The most technologically important PZMs are poled ceramics that exhibit transverse isotropy with the
unique axis aligned along the poling direction. When the ceramics are poled in the spherically radial di-
rection, they will exhibit spherical isotropy, a special kind of transverse isotropy. Kirichok (1980) seemed to
be the first to address the vibration problem of a piezoelectric sphere with spherical isotropy; however, only
the simplest case, e.g. the purely radial vibration was considered. Shul’ga (1993) used separation formulae
for displacements and shear stresses to analyze the general electroelastic oscillations of homogeneous
spherical shells. Recently, Chen (1999) showed that the displacement separation technique developed
for spherically isotropic elasticity (Ding and Chen, 1996; Chen, 1996) could be applied to PZMs and he
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presented exact solutions of some problems related to an infinite spherically isotropic piezoelastic medium.
The method has been used to analyze a homogeneous piezoceramic hollow sphere rotating at a constant
angular velocity (Chen and Ding, 1998).

Piezoelectric crystals besides being direction oriented could also exhibit inhomogeneity with reference to
physical properties. Especially, the concept of functionally graded material (FGM) has been developed to
optimize the response of structures. In FGMs, material constants usually vary along one or more directions
continuously. Utilizing this inhomogeneity character, FGMs have found many important applications in
from micro-electrical-mechanical systems (MEMS) to aerospace science. There are few theoretical works on
piezoelectric plates or shells with functionally graded properties. Sarma (1980) has considered the torsional
wave motion of an inhomogeneous piezoelectric cylindrical shell with finite length. Liu and Tani (1991,
1992) studied waves in piezoelectric plates with functionally graded properties by using a laminated ap-
proximation method. To the authors’ knowledge, there is no study related to non-homogeneous piezo-
electric spherical shells. It is noted here that Puro (1980) has applied a separation method to take account of
the effect of radial inhomogeneity of a spherically isotropic purely elastic medium.

In this paper, the displacement separation technique (Ding and Chen, 1996; Chen and Ding, 1998; Chen,
1999) is further applied to simplify the basic equations of a spherically isotropic piezoelastic medium with
radial inhomogeneity. Along with the function expansion method, the controlling equations are finally
turned to an uncoupled second-order ordinary differential equation and a coupled system of three second-
order ordinary differential equations. In the paper, attention will be paid to the case that the material
constants are of power functions in the radial variable, of which, solutions to the resulting equations are
derived. A steadily rotating piezoceramic spherical shell is then investigated and numerical results are given
to show the effect of material inhomogeneity.

2. Basic formulations

In contrast to the work presented earlier for the homogeneous piezoelasticity (Chen and Ding, 1998;
Chen, 1999), we here assume that all the material constants (five elastic constants, ¢;;, two dielectric con-
stants ¢;, three piezoelectric constants, e;;, and the mass density p) are functions of the radial coordinate r,
i.e. the piezoelectric medium under consideration is non-homogeneous along the radial direction.

For the analysis, the following displacement separation technique is valid as for the homogeneous
piezoelasticity:

1 o 0G oy 1 oG

W %G L AL A, 1
T T sin0dg 000 " T80 smbop TV (1)

It is also assumed that the body force components F; (i = r, 0, ¢) can be decomposed in the same way,

1 oV ouU oV 1 oU

Fp=——— ' Fy=—————. rF.=W. 2
o i T30  sin0 g )
By employing Eqgs. (1) and (2), through some lengthy manipulations, we can transfer the equations of

equilibrium (Love, 1927) and the charge equation of electrostatics (Tiersten, 1969; Shul’ga, 1993; Chen,
1999) to the following equations:

A + (VZC44)W - (V2C44)(V2G - G) + (V2€15)¢ —rU = 0, (3)
B+ (Vacas)(Vayy — ) + 1V = 0. (4)

[L3 + 2(V2C13) + (V2C33)VZ]W — [L4 + (V2C13)]VfG =+ [L5 =+ (V2e33)V2}q§ +rW = 0, (5)
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[L7 + 2(V2€31) + (V2633)V2]W — [Lg + (V2e31)]VfG - [Lg + (V2833)V2]<15 = szf, (6)
where p; is the free charge density in the piezoelastic body, and
A= L1W - LzG +L6¢, B= [C44V§ - 26‘44 +ci —cip+ %(011 - Clz)v%]lp,
Ly = (c13 + caa) Vo + c11 + 2¢a4 + c12, Ly = cuV3 — 2ca + c1p — cia + en Vi,
Ly = ¢3V; = 2(en + cip — e13) + ca V7, Ly = (ci3+caa)Vy —cas — c11 — cia + €13,

Ls = e3V3; — 2e31 Vs + €5 V7, Lo = (ers + e31) Vs + 2eys,

L = e V3 +2e3V, + 2e31 + €153, Ly = (e31 + e15)Va + €31 — eys, )
0 0 0
Lo = &3 V3 +en V3, Va=ro, V3= ot Vi=V3+V,,
02 0 1 o2
Vi=—5+cotl_—-+— —.
Lo 00 sin’6 3¢

Thus, we turn the basic equations to Egs. (3)—(6), from which, we find function  is uncoupled from the
other two displacement functions w and G, and the electric potential @ . In particular, Eq. (4) is a second-
order uncoupled partial differential equation in y; Egs. (3), (5) and (6) form a coupled partial differential
equation system in w, G and .

For closed spherical shells, noticing that the resulting equations include the partial operator V3, which is
defined in Eq. (7), it is assumed that

Y= Réw,,<é>sr<e, ). w= ng;<f>sz'<e, $). o
G=REG,(O)S(0.9),  ®=R% L 0(9)S!(0.9)
and
V= —euhOSI0.6), U= —culU(S0.4).
W= —ex SIOSI0.0). 1o = —en XX, (OSI0.4), ¥

where & = /R is the non-dimensional radial coordinate, R is the mean radius of the shell, and S (6, ¢) are
spherical harmonics. Substituting Egs. (8) and (9) into Egs. (3)—(6), yields

EY 4+ (fo+2)80, — 2+ (7 +n=2)(fi = /2)/2+ folb, = &V, (10)
W+ (fio + )W, + (o1 + 2fi)wa — p2EG, — [ps — n(n+ 1) /1] G, + 1 £ @)

+ (g2 + ff12/ 1) 6P, + q3 D, = EW, (11)

EG 4 (fo +2)EG, + (pa — 15) G — psEW, — (ps + o)W + qal®, + (g5 + f13)®, = EU,, (12)

ED! + (fia + 2)ED, + g6 D, — EW — (01 + f12)EW, — (ps + fi5)Wa — oG, — (P10 + fi6) G
= éXna (13)

where a prime denotes differentiation with respect to &, and
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P =2(fs = fi = f2) = n(n+1)]/fa, pr=—n(n+1)(fs+1)/fs,
pp=nn+0)(i+h+1=f)/fs, p=fi—foi—nn+1)fi =2,
ps=fi+1, ps=fi+fr+2, pr=2(fs +1), Py =2fc —n(n+1)fs,

p=nn+1)(fs+fs), po=nn+)fs—rf), a=f/l

g2 = 2f3(1 = f6)/ 4, gy = —n(n+1)fsfs/ fs, qa = —(fs + f6) /s

qs = —2fsfs, g6 = —n(n+1)f7, (14)
fi=cu/ca, fo=cin/ca, f3 = ci3/cas, Ja = c33/cas,

fs = eis/es, fs = ear/es, fr = en/ess, Sz = €33/ (e33¢a4),

fo = (Vacu)/caa, Sio = (Vacs3) /33, Jit = (Vacis) /33,

Ji2 = (V2€33)/€33, Ji3= _fS(VZQIS)/eB; Sia= (V2833)/833,

Jfis = 2(V2€31)/€337 Ji6 = n(n + 1)(V2€31)/€33-

It is obvious that Eq. (10) is an independent second-order ordinary differential equation in the unknown ,,.
Egs. (11)—(13) are coupled by the three unknowns G,, w, and @,, and each equation involved is a second-
order ordinary differential one. In the next section, solutions to Egs. (10)—-(13) will be given for the par-
ticular case that all material constants are of power functions with an identical exponent of the radial
coordinate.

3. Solutions

We assume here that the distributions of material constants obey a same power law along the radial
direction, i.e. c;; = &, ey = €&, & = eg.'f“ and p = poi”'., here ¢, ¢}, &), and p, are constants. Eqs. (10)-
(14) keep unaltered except that the following non-dimensional parameters read

ij> “ij

fo=fo=fu=rfu=09 fu=afs/fs, fis=—ofsfs, fis=2afs, fie=n(n+1)ofs. (15)
It is noted here that the non-dimensional parameters f; (i = 1,2, ...,8) defined in Eq. (14) now take forms
such as f1 = ¥, /c}, and f, = &%, /cY,, ete.
3.1. The general solution

It can be seen that the corresponding homogeneous Eqs. (10)—(13) are of the Euler type so that the

general solution (or homogeneous solution) can be obtained by assuming:

Gn :Anév,,—(lntoc)/Z7 w, = Bnév,,—(]+a)/27 (pn — Cﬂév,ﬁ(IJra)/Z, lﬁ — Dng/‘.,,f(lJroc)/Z, (16)

where 4, B,, C,, and D, are undetermined constants. Substituting Eq. (16) into Egs. (10)—(13) and omitting
the right-hand sides, yields

(22 =49 +2(n—1)(n+2)(fi — f») + (6 +a)]}D, =0, (17)
and
AII
H(v,){ B, ; =0, (18)
C,
with
V= (1+0)/4+ps—o —pslva — (1 +2)/2] —ps — o qa[ve — (1 + ) /2] + g5 + fi3
H(v,) = | =pa[v, — (1 + @) /2] = ps +n(n + 1)1 v — (142)* /44 p +2/fu @ {v2 = (1+a)* /4= 2fslva — (1 +0)/2]} + g5 | -
—po[va — (1 + ) /2] — p1o — fi6 *vﬁ+(1+“)2/4*2f'6[1’1,*(1+1)/2]*P8*f15 VZ*(1+1)2/4+(16

(19)
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For non-zero D,, Eq. (17) gives the eigenvalues of 4, as follows

Do = HO+2(n = 1)(n+2)(fi — 5) + (6 + 2)] /2. (20)
From Eq. (18), the eigenequation determining v, is obtained
H(v,)| = 0. (21)

As the homogeneous case (Chen and Ding, 1998), Eq. (21) is a cubic algebraic equation in v2. For stable
materials, the eigenvalue v, cannot be purely imaginary. We assume that v,; = —v,;.3 with Re[v,;] <0,
(i =1,2,3) and that the six eigenvalues are distinct. One can then obtain the following relationships from
Eq. (18)

B, =K.A,, Ci = K2 A, (22)

ni

for each eigenvalue v,,;, (i = 1,2, ...,6), where K, and K2 are solved from two independent equations in Eq.
(18). Based on the above results, we obtain a general solution as follows:

- RZZK&-Aw:W1+“>/2s:,"(9, ?),

n=0 i=
— Vni— 1 OC m Ani— x m
— —R;ZA,,,é * _es,, R;ZDn,é (1+2) - 9 a o S"(0, p), .
Vni— oc m n,f o 6 m
=—R;ZAH,5 (+2) H@S (0, ) +R;ZDmé’ R 25800, ),

¢ = R@ZZKZI.A,,,-E’”"(”“)/zS;”(0, $).

350 =

It should be noted that Eqgs. (10)—(13) degenerate to the following two Eqs. when n = 0:

EWy + (2 4+ ) éwh + (o1 + 2fi)wo + @1 ED + (g2 + fafia) f2)EBYy = EW, (24)
ED)+ (24 0)EB — Ewp — (pr + ) Ewl — (ps + fis)wo = EXo. (25)
Consequently, the following fourth-order eigenequation is derived:
[N (vo)] @1 {v} =31+ 0)* = 2f[vo — {(1 + )]} vi =31+ a) +pi + 2/
o) =
i —i(1+a)’ 3+ 31+ )" =2/ =3 (1 + )] — ps — fis

=~ = X1+ o)’ J{(1 + q1) v — 31+ 0)°] = 2f6q1(2fs — 1 —0) + p1 + 2fu1} =
(26)

Thus to write in a united form as given in Eq. (23), we shall employ the following formulae for » = 0 there:

{3 — (1+ )’ /4 = 2fg v — (1 +)/2]}
Vi — (1 +a)/4+ p + 2/

Ay = Cy;, K =1, Ky = — (i=1,2,4,5) (27)
and 4¢3 = Ao = 0. It can be shown that the terms in the general solution corresponding to vos = (1 + a)/2,
via = (1 +a)/2 and A1, = (3 + a)/2 all give zero stress and electric displacement fields. Without the loss of
generality, we assume Ay, 414 and Dy, to be zero.

Setting o = 0 and neglecting the piezoelectric effect, expressions obtained in Eq. (23) degenerate iden-
tically to those of the homogeneous pure elasticity (Chen, 1966).
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3.2. The particular solution

Similar to the homogeneous pure elasticity (Chen, 1966), we assume the body forces and the free charge
density to be in the following form:

0
w,—(5—a)/2 am 1, —(5—0)/2 m
F, = ZEé Sr(0, ), ZF@ 3550, 9);
: 8)
w,—(5—a)/ w,—(5—a)/2 om
&—Zn& ww $1(0,9). ZHé $,(0,9).
where E,, F,, H, and u, are known constants. From Eqgs. (2), (9) and (28), one obtains
V(&) =0, U, = (RFE,/c" gtn— ()2
(€ (&) = (RE, [cg)€ (29)

Q) = —(RE, ) 2, X,(0) = ~(RH, el 0"

To find the particular solution to the inhomogeneous Egs. (10)—(13) with the body forces and the free
charge density as given in Eq. (28), it is assumed that

1 6

> 0 - (142
= _RZAZé#n (14+w)/2 —§"(0, ), u; _ —RZA:f“" (1+A)/2m _¢ (0, ),
n=1

a0 " —
o0 e() 00 - (30)
u = RZB:€#n*(l+a)/2S'rln(9)¢), o — R%Zc;é#nf(lﬂc)ﬂs;ln(g,¢).

n=0 33 n=0

The equations to determine the constants 47, B, and C; are thus obtained from Eqs. (11)~(13) or Eqgs. (24)
and (25):

4, RF, [cg
H(w,){ B, p =< —RE,/; ¢, (31)
G, —RH,,/e(3)3

for n > 0, and

N G B REy/c3; 3
L T (32)

for n =0.

Obviously, the complete solution includes two different contributions, i.e. the homogeneous solution (23)
and the particular solution (30). In the next section, we shall consider the general axisymmetric boundary-
value problem of a piezoceramic spherical shell.

4. Axisymmetric boundary-value problem

We shall pay attention to the axisymmetric boundary-value problem of a piezoelectric spherical shell
with the inner radius ¢ and the outer radius b, in absence of body forces and free charge density. In the
axisymmetric case, Eq. (23) becomes
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u,:Riin A, &P (cos0),  ug :—RZZA,”E"”‘ (22— p (cosb),

n=0 i= n=1 i=1 (33)
mi—(1+0) /. €33 vpi— (140
Uy = RZZDmf (1+) —P,,(cos@ ®=R>2 P ZZK{.Am-é 1+4/2p (cos0),

n=1 i= n=0 i=

where P,(cos0) are Legendre polynomials. The stress and electric displacement components are:

Gii—ZZAm{c%sKl [ — (14 2)/2] + €} 2K, + n(n + 1)]

n=0 7

+ (3833) K2 [ — (1 +a)/2] }g"'1f<3“>/2Pn(cos 0),
33

0 0 a
o-;%ZZAm{cM ot (4 0)/2) + R b 2 D cost),

n=1 i= 33

0%y + 0%, = ZZA,”{ A A 2K+ n(n 4 1)] + 265K v — (1 + ) /2]
n=0 i=

(34)

26 e
31733
+

K2 [v — (1 + og)/z]}év,,i(sa)/zpn(cos 0),

€33

oo 6
a Vni— o
ol — 0—3’545 = ZZAm(C?l —ch) {n(n + 1)P,(cosb) + ZCoteagP (cos@)] (-2)/2,

n=1 i=1

Dy = ZZAm{eza Llv — (1 +0)/2] + €5, [2K); + n(n + 1)]

n=0 i=
— & K2 vy — (1 + ) /2] 3~ C9/2p, (cos0),

'0 0 iy 0
Df = ZZAnz{els vni+<3+a>/z1—9g#1<5,}f‘m (2 5 P(cosO),

33

n=1 i

Here the superscript g indicates the variable corresponding to the general solution. On the inner and outer
spherical surfaces » = a and r = b, it is assumed that the surface tractions and electric charge are sufficiently
smooth to admit the representations (Chen, 1966)

0., (& ZCU (cos),
on(E) = an{" @mcose»
0re(& Zrn 66 (cos0),

ZKU cosf),

where j = 1,2, ¢, = a/R and &, = b/R are the two dimensionless radii, and the coefficients (Y, ), 1), and
xY) are known for all n. They can be found through the orthogonality properties of Legendre polynomials.
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In order that the shell is in mechanical equilibrium, it is necessary that the z-components of the sum of the
resultant forces and moments on the £, = a/R and &, = b/R boundaries be zero, which leads to

[0 = 2] & = | - 200 &,

1 2)

48 -3 =0

Moreover, the electric equilibrium condition demands
K8 - kP8 =0.

The arbitrary constants 4,; (j =1,2,...,

(36)

(37)

(38)

6) are completely determined by Egs. (36) and (38), together

with the following sets of equations, which are obtained by comparing coefficient of Eqs. (34) and (35):

n=20

6 0

1
E Ao; CssKl < ;a) + 20?31(&. (633) Kz <
i=1 31

6

1+« 1+«
ZAOi 6(3)31(31 (VO I ) "‘28(3)1 e%3K2 <"0i T
=1

n>0

33

6
1
S A {K (0 =5 ) + bl nto+ 1)+ e

6
1+«
ZAm{e(3)3Kl <Vm' - T) + €3, 2K, + n(n +1)] — e},K;. (

GO =12, ()

14w Vni—(3—2 ; .
2 )}é =) (=12)

1+O( eVpi—(3—a i .
2 >}gj ¢ )/ZZKEz]) (,/:172)7

(42)
6 0 0
3 .
ZA"f{"”34 {K"l" B ( B §>] + Ki}ﬁf‘ G2 — 0 (j=1,2), (43)
= 33
Aps = Aops = Aos = A14 = 0. (44)

Similarly, the constants D,; and D,, are determined by Eq. (37) and the following set of equations:

2
3 , ‘
ZC24Dni (im’ - —2|’— O‘) fjm*(3*0()/2 - T;(;]) (J = 17 2)7

i=1

D12 =0.

(45)

(40)

It is seen that when n = 0, there are just three unknowns Aq;, 49 and 4¢s. However, we have totally four
equations in Egs. (39) and (40). By virtue of Egs. (26) and (27), it can be verified for » = 0 that,
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1 1
eBK1 < ;oc) + 26(3)1 e33K2 < ; oc>

1+o o
0 l+a 0 q{"m (JrT} = 2fsq1 (v —5%) 0 l+a
=—len|vi-— + 2e3, —eyn| v ———

v — (L+a)*/4+pi + 2/ 2

() T R A
T2 = (142 /4+ 1+ 2/

r (V 1+a>(1+q1)[\%i G ] = 2feq1 (2fs = 1= )+ pr + 271
33\ Y0P T

= (i=2,5)
2 vg, — (1 +°‘) /4+p1+ 2/
(47)
Since vo; = —(1 4 «)/2, one finds that Eq. (40), which now reads as
Aor[— ezz 11(1 + o) + 26(3)1Kél + e(3)3(1 + )] = Ko)‘f (48)

is compatible with the electric equilibrium condition (38). Thus from Egs. (39) and (48), we can uniquely
determine the three unknowns Ay, Ag; and 4ps. A similar but a little more complicated verification can also
be given in the case of n = 1, which is left to the interested reader.

5. A rotating piezoceramic spherical shell
The problem of a rotating spherical shell also can be treated as an axisymmetric boundary-value

problem. The non-trivial stresses and electric displacements, however, should involve the terms corre-
sponding to the particular solution:

n=0

=% + ZA {c23 [, — (14 2)/2] + 2L + n(n + 1)]

(9(3)3)

833

+

L, — (14 2)/2] }é""_(3_“>/2P,,(0050),

%) O 0
* 1 15e%3 2 —(3—2)/ » O
0,0 = 05 + ,,E AH{CML —p,+ B+ a)/2] + <, 2] }f“ —aOP,,(COSH)

G0 + Gp = Oy + T4y + ZA:{(C% + ey 2L, +n(n + 1)] + 2ci3L, [, — (1 +2)/2]
n=0

0

269, €Y A
2B L, — (14 9)/2 ) cos0),
33

= 0
G — Oy = Oy — 05, + D _A(c) — ) [n(n + 1)P,(cos0) + 2c0t075P,  (cos0) | &0

n=1

D, =Df + Y A{eSLhlm, — (1 +a)/2] + €} [2L) + n(n + 1)]

n=0
— §3L2 [, — (1 +0)/2] &~ C72p, (cos ),

o 0,0 , 0
=D5+ ZAZ{e?S[L}l —p, + (34 a)/2] - 8161633L2}5”" (3==)/ @P,,(cosﬁ)
n=1

33
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where

A5 =C;, Ly=By/C;, Li=1, n=0, (50)
L,ll =B:/A4:, Lfl =Ci/4, n>0.
It is now supposed that the piezoceramic spherical shell, with the internal and external radii being ¢ and
b, respectively, rotate at an angular velocity w about the polar axis. The centrifugal force acting on the shell
may thus be represented as a body force as follows (Chen, 1966):

2 2
F = 2’);" "1Py(cos0) — Py(cosO)], F= fp‘g’ r %Pz(cosﬁ), Fy=p; =0. (51)
Hence, in Eq. (28),
Ey=—Ey = =2F = 2Rpy’ /3, iy =1y = (T+2)/2, (52)

with R = (a¢+ b)/2. From the free surface boundary conditions, one can derive the linear equations to
determine the unknowns 4,;. Thus the elasto-electric field of the rotating piezoceramic spherical shell is
exactly obtained. As for the general axisymmetric boundary-value problem considered in the last section,
we have totally three unknowns, i.e. 4y, 4o and Ays when n = 0. Meanwhile, there are four boundary
conditions, i.e. g,, = D, = 0 for » = a, b. We have demonstrated that the terms corresponding to vy, and vgs
in the expression of D, vanish everywhere in the shell. That is to say, only the term related to 4y, does not
equal zero. Moreover, since L} = B;;/C; = (3 + 2f5), we can easily verify that the term corresponding to the
particular solution in D, also vanishes. Thus the two boundary conditions D, =0 (» = a, b) all result to
Ap = 0. We finally get two equations from the boundary conditions a,, = 0 (r = a,b) to determine the
other two unknowns 4gp, and Ays.

As a numerical example, distributions of the non-dimensional stresses a; = a9/ (py@’R?) and o, =
044/ (pow’R?), and the non-dimensional electric displacement D = Dycus/(e33p,»°R) along the radial di-
rection are shown in Figs. 1-6. The material is taken to be PZT-4. Dunn and Taya (1994) have listed its
material constants for the homogeneous case. It is noted here that for FGMs with a simple power-law
distribution as considered in this paper, the non-dimensional material constants f; — f;3 will be the same as
those of the homogeneous ones (Chen et al., 1997; Chen, 1999).

Figs. 1-4 are for a moderately thick shell with the thickness-to-mean radius ratio (b — a)/R = 0.5, while
Figs. 5 and 6 for a thin shell with the ratio being 0.1. From these figures, it can be shown that the inho-
mogeneity has a very significant effect on the distributions of stresses and electric displacements in the shell.

Nondimensional stresses

Fig. 1. Distributions of the non-dimensional stresses o = g/ (py*R) (-@-) and 63 = 6,4,/ (py®*R) (-O-) along the radial direction
for o = 5.0.
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Fig. 2. Distributions of the non-dimensional stresses ¢, (-@®-) and ¢, (-O-) along the radial direction for a = 0.0.

Fig. 3. Distributions of the

Nondimensional stresses
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Fig. 4. Distribution of the non-dimensional electric displacement D = Dycys/(e33p,@*R) along the radial direction when 6 = r/4.
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Fig. 5. Distributions of the non-dimensional stresses o; (—@-) and g, (-O-) along the radial direction for a thin spherical shell (¢ = 5.0).
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Fig. 6. Distribution of the non-dimensional electric displacement D along the radial direction when 6 = 7/4 for a thin spherical shell.

In fact, adopting a certain value of the inhomogeneity parameter o can optimize not only the stress (electric
displacement) level but also the distribution configuration. This will be of particular importance in modern
engineering design. From Fig. 5, it can also be seen that, for the thin spherical shell, the distribution of
stress o along the radial direction is nearly linear even for the non-homogeneous case (¢ = 5.0). This agrees
with the assumption employed in the classical shell theory. However, the distribution of the electric dis-
placement is far from linear as one can see from Fig. 6. This implies that to develop a two-dimensional
approximate theory one should use a high-order mode to fit the electric field even for a thin piezoceramic
shell.

6. Conclusions

In this paper, we simplify the basic equations of a spherically isotropic piezoelastic medium with a FGM
by using the displacement separation technique. For the particular case that all the material constants are of
power functions with an identical exponent of the radial coordinate, the general as well as the particular
solutions to the resulted ordinary differential equations are obtained exactly. The elasto-electric field of a
rotating piezoceramic spherical shell is then analyzed. In fact, exact expressions for the elasto-electric field
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are presented. Numerical investigation shows that the inhomogeneous character have an obvious effect on
both the stress (electric displacement) level and their distribution configurations.
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